Papers
Topics
Authors
Recent
2000 character limit reached

Robust multigrid solvers for the biharmonic problem in isogeometric analysis

Published 1 Feb 2018 in math.NA | (1802.00220v1)

Abstract: In this paper, we develop multigrid solvers for the biharmonic problem in the framework of isogeometric analysis (IgA). In this framework, one typically sets up B-splines on the unit square or cube and transforms them to the domain of interest by a global smooth geometry function. With this approach, it is feasible to set up $H2$-conforming discretizations. We propose two multigrid methods for such a discretization, one based on Gauss Seidel smoothing and one based on mass smoothing. We prove that both are robust in the grid size, the latter is also robust in the spline degree. Numerical experiments illustrate the convergence theory and indicate the efficiency of the proposed multigrid approaches, particularly of a hybrid approach combining both smoothers.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.