Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Neural Networks In Fully Connected CRF For Image Labeling With Social Network Metadata (1801.09108v1)

Published 27 Jan 2018 in cs.CV

Abstract: We propose a novel method for predicting image labels by fusing image content descriptors with the social media context of each image. An image uploaded to a social media site such as Flickr often has meaningful, associated information, such as comments and other images the user has uploaded, that is complementary to pixel content and helpful in predicting labels. Prediction challenges such as ImageNet~\cite{imagenet_cvpr09} and MSCOCO~\cite{LinMBHPRDZ:ECCV14} use only pixels, while other methods make predictions purely from social media context \cite{McAuleyECCV12}. Our method is based on a novel fully connected Conditional Random Field (CRF) framework, where each node is an image, and consists of two deep Convolutional Neural Networks (CNN) and one Recurrent Neural Network (RNN) that model both textual and visual node/image information. The edge weights of the CRF graph represent textual similarity and link-based metadata such as user sets and image groups. We model the CRF as an RNN for both learning and inference, and incorporate the weighted ranking loss and cross entropy loss into the CRF parameter optimization to handle the training data imbalance issue. Our proposed approach is evaluated on the MIR-9K dataset and experimentally outperforms current state-of-the-art approaches.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Chengjiang Long (35 papers)
  2. Roddy Collins (1 paper)
  3. Eran Swears (1 paper)
  4. Anthony Hoogs (13 papers)
Citations (24)

Summary

We haven't generated a summary for this paper yet.