Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 333 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Free Energy Minimization Using the 2-D Cluster Variation Method: Initial Code Verification and Validation (1801.08113v2)

Published 24 Jan 2018 in cs.NE

Abstract: A new approach for general artificial intelligence (GAI), building on neural network deep learning architectures, can make use of one or more hidden layers that have the ability to continuously reach a free energy minimum even after input stimulus is removed, allowing for a variety of possible behaviors. One reason that this approach has not been developed until now has been the lack of a suitable free energy equation. The Cluster Variation Method (CVM) offers a means for characterizing 2-D local pattern distributions, or configuration variables, and provides a free energy formalism in terms of these configuration variables. The equilibrium distribution of these configuration variables is defined in terms of a single interaction enthalpy parameter, h, for the case of equiprobable distribution of bistate units. For non-equiprobable distributions, the equilibrium distribution can be characterized by providing a fixed value for the fraction of units in the active state (x1), corresponding to the influence of a per-unit activation enthalpy, together with the pairwise interaction enthalpy parameter h. This paper provides verification and validation (V&V) for code that computes the configuration variable and thermodynamic values for 2-D CVM grids characterized by different interaction enthalpy parameters, or h-values. This work provides a foundation for experimenting with a 2-D CVM-based hidden layer that can, as an alternative to responding strictly to inputs, also now independently come to its own free energy minimum and also return to a free energy-minimized state after perturbations, which will enable a range of input-independent behaviors. A further use of this 2-D CVM grid is that by characterizing local patterns in terms of their corresponding h-values (together with their x1 values), we have a means for quantitatively characterizing different kinds of neural topographies.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube