Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learned Mappings for Targeted Free Energy Perturbation between Peptide Conformations (2306.14010v1)

Published 24 Jun 2023 in cond-mat.stat-mech and stat.ML

Abstract: Targeted free energy perturbation uses an invertible mapping to promote configuration space overlap and the convergence of free energy estimates. However, developing suitable mappings can be challenging. Wirnsberger et al. (2020) demonstrated the use of machine learning to train deep neural networks that map between Boltzmann distributions for different thermodynamic states. Here, we adapt their approach to free energy differences of a flexible bonded molecule, deca-alanine, with harmonic biases with different spring centers. When the neural network is trained until ``early stopping'' - when the loss value of the test set increases - we calculate accurate free energy differences between thermodynamic states with spring centers separated by 1 \r{A} and sometimes 2 \r{A}. For more distant thermodynamic states, the mapping does not produce structures representative of the target state and the method does not reproduce reference calculations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. K. A. Armacost, S. Riniker, and Z. Cournia, Novel Directions in Free Energy Methods and Applications, Journal of Chemical Information and Modeling 60, 1 (2020).
  2. A. Pohorille, C. Jarzynski, and C. Chipot, Good Practices in Free-Energy Calculations, The Journal of Physical Chemistry B 114, 10235 (2010).
  3. D. A. Pearlman and P. A. Kollman, The lag between the Hamiltonian and the system configuration in free energy perturbation calculations, The Journal of Chemical Physics 91, 7831 (1989).
  4. D. Wu and D. A. Kofke, Phase-space overlap measures. II. Design and implementation of staging methods for free-energy calculations, The Journal of Chemical Physics 123, 084109 (2005a).
  5. D. Wu and D. A. Kofke, Phase-space overlap measures. I. Fail-safe bias detection in free energies calculated by molecular simulation, The Journal of Chemical Physics 123, 054103 (2005b).
  6. C. Jarzynski, Targeted free energy perturbation, Physical Review E 65, 046122 (2002).
  7. R. Zwanzig, High-temperature equation of state by a perturbation method. I. Nonpolar gases, Journal of Chemical Physics 22, 1420 (1954).
  8. A. F. Voter, A Monte Carlo method for determining free-energy differences and transition state theory rate constants, The Journal of Chemical Physics 82, 1890 (1985).
  9. D. L. Severance, J. W. Essex, and W. L. Jorgensen, Generalized alteration of structure and parameters: A new method for free-energy perturbations in systems containing flexible degrees of freedom, Journal of Computational Chemistry 16, 311 (1995), https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.540160306 .
  10. C. Jarzynski, Equilibrium free-energy differences from nonequilibrium measurements: A master-equation approach, Physical Review E 56, 5018 (1997a).
  11. C. Jarzynski, Nonequilibrium equality for free energy differences, Physical Review Letters 78, 2690 (1997b).
  12. H. Oberhofer, C. Dellago, and P. L. Geissler, Biased Sampling of Nonequilibrium Trajectories: Can Fast Switching Simulations Outperform Conventional Free Energy Calculation Methods?, The Journal of Physical Chemistry B 109, 6902 (2005).
  13. M. A. Miller and W. P. Reinhardt, Efficient free energy calculations by variationally optimized metric scaling: Concepts and applications to the volume dependence of cluster free energies and to solid–solid phase transitions, The Journal of Chemical Physics 113, 7035 (2000).
  14. A. M. Hahn and H. Then, Using bijective maps to improve free-energy estimates, Physical Review E 79, 011113 (2009).
  15. X.-L. Meng and S. Schilling, Warp Bridge Sampling, Journal of Computational and Graphical Statistics 11, 552 (2002).
  16. H. Paliwal and M. R. Shirts, Multistate reweighting and configuration mapping together accelerate the efficiency of thermodynamic calculations as a function of molecular geometry by orders of magnitude, The Journal of Chemical Physics 138, 154108 (2013).
  17. T. B. Tan, A. J. Schultz, and D. A. Kofke, Efficient calculation of temperature dependence of solid-phase free energies by overlap sampling coupled with harmonically targeted perturbation, The Journal of Chemical Physics 133, 134104 (2010).
  18. S. G. Moustafa, A. J. Schultz, and D. A. Kofke, Very fast averaging of thermal properties of crystals by molecular simulation, Physical Review E 92, 043303 (2015).
  19. X. Ding and B. Zhang, Computing Absolute Free Energy with Deep Generative Models, Journal of Physical Chemistry B 124, 10166 (2020).
  20. X. Ding and B. Zhang, DeepBAR: A Fast and Exact Method for Binding Free Energy Computation, Journal of Physical Chemistry Letters 12, 2509 (2021).
  21. A. Rizzi, P. Carloni, and M. Parrinello, Targeted free energy perturbation revisited: Accurate free energies from mapped reference potentials, Journal of Physical Chemistry Letters 12, 9449 (2021), arxiv:2106.09295 .
  22. L. Sbailò, M. Dibak, and F. Noé, Neural mode jump Monte Carlo, Journal of Chemical Physics 154, 074101 (2021).
  23. A. van der Vaart, P. B. Orndorff, and S. T. Le Phan, Calculation of Conformational Free Energies with the Focused Confinement Method, Journal of Chemical Theory and Computation 15, 6760 (2019).
  24. D. M. Zuckerman and T. B. Woolf, Systematic finite-sampling inaccuracy in free energy differences and other nonlinear quantities, Journal of Statistical Physics 114, 1303 (2004).
  25. C. H. Bennett, Efficient Estimation of Free-Energy Differences from Monte Carlo Data, Journal of Computational Physics 22, 245 (1976).
  26. M. R. Shirts and J. D. Chodera, Statistically optimal analysis of samples from multiple equilibrium states, Journal of Chemical Physics 129, 124105 (2008).
  27. T. H. Nguyen and D. D. L. Minh, Intermediate Thermodynamic States Contribute Equally to Free Energy Convergence: A Demonstration with Replica Exchange, Journal of Chemical Theory and Computation 12, 2154 (2016).
  28. D. P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization (2017), arxiv:1412.6980 [cs] .

Summary

We haven't generated a summary for this paper yet.