Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Secure Mobile Crowdsensing with Deep Learning (1801.07379v1)

Published 23 Jan 2018 in cs.CR, cs.LG, and cs.NI

Abstract: In order to stimulate secure sensing for Internet of Things (IoT) applications such as healthcare and traffic monitoring, mobile crowdsensing (MCS) systems have to address security threats, such as jamming, spoofing and faked sensing attacks, during both the sensing and the information exchange processes in large-scale dynamic and heterogenous networks. In this article, we investigate secure mobile crowdsensing and present how to use deep learning (DL) methods such as stacked autoencoder (SAE), deep neural network (DNN), and convolutional neural network (CNN) to improve the MCS security approaches including authentication, privacy protection, faked sensing countermeasures, intrusion detection and anti-jamming transmissions in MCS. We discuss the performance gain of these DL-based approaches compared with traditional security schemes and identify the challenges that need to be addressed to implement them in practical MCS systems.

Citations (10)

Summary

We haven't generated a summary for this paper yet.