Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rank Selection of CP-decomposed Convolutional Layers with Variational Bayesian Matrix Factorization (1801.05243v1)

Published 16 Jan 2018 in cs.LG

Abstract: Convolutional Neural Networks (CNNs) is one of successful method in many areas such as image classification tasks. However, the amount of memory and computational cost needed for CNNs inference obstructs them to run efficiently in mobile devices because of memory and computational ability limitation. One of the method to compress CNNs is compressing the layers iteratively, i.e. by layer-by-layer compression and fine-tuning, with CP-decomposition in convolutional layers. To compress with CP-decomposition, rank selection is important. In the previous approach rank selection that is based on sensitivity of each layer, the average rank of the network was still arbitrarily selected. Additionally, the rank of all layers were decided before whole process of iterative compression, while the rank of a layer can be changed after fine-tuning. Therefore, this paper proposes selecting rank of each layer using Variational Bayesian Matrix Factorization (VBMF) which is more systematic than arbitrary approach. Furthermore, to consider the change of each layer's rank after fine-tuning of previous iteration, the method is applied just before compressing the target layer, i.e. after fine-tuning of the previous iteration. The results show better accuracy while also having more compression rate in AlexNet's convolutional layers compression.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Marcella Astrid (22 papers)
  2. Seung-Ik Lee (16 papers)
  3. Beom-Su Seo (2 papers)
Citations (10)