Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards a more efficient representation of imputation operators in TPOT (1801.04407v1)

Published 13 Jan 2018 in cs.LG

Abstract: Automated Machine Learning encompasses a set of meta-algorithms intended to design and apply machine learning techniques (e.g., model selection, hyperparameter tuning, model assessment, etc.). TPOT, a software for optimizing machine learning pipelines based on genetic programming (GP), is a novel example of this kind of applications. Recently we have proposed a way to introduce imputation methods as part of TPOT. While our approach was able to deal with problems with missing data, it can produce a high number of unfeasible pipelines. In this paper we propose a strongly-typed-GP based approach that enforces constraint satisfaction by GP solutions. The enhancement we introduce is based on the redefinition of the operators and implicit enforcement of constraints in the generation of the GP trees. We evaluate the method to introduce imputation methods as part of TPOT. We show that the method can notably increase the efficiency of the GP search for optimal pipelines.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Unai Garciarena (6 papers)
  2. Alexander Mendiburu (16 papers)
  3. Roberto Santana (32 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.