Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GIFT: Guided and Interpretable Factorization for Tensors - An Application to Large-Scale Multi-platform Cancer Analysis (1801.02769v1)

Published 9 Jan 2018 in q-bio.GN and cs.NA

Abstract: Given multi-platform genome data with prior knowledge of functional gene sets, how can we extract interpretable latent relationships between patients and genes? More specifically, how can we devise a tensor factorization method which produces an interpretable gene factor matrix based on gene set information while maintaining the decomposition quality and speed? We propose GIFT, a Guided and Interpretable Factorization for Tensors. GIFT provides interpretable factor matrices by encoding prior knowledge as a regularization term in its objective function. Experiment results demonstrate that GIFT produces interpretable factorizations with high scalability and accuracy, while other methods lack interpretability. We apply GIFT to the PanCan12 dataset, and GIFT reveals significant relations between cancers, gene sets, and genes, such as influential gene sets for specific cancer (e.g., interferon-gamma response gene set for ovarian cancer) or relations between cancers and genes (e.g., BRCA cancer - APOA1 gene and OV, UCEC cancers - BST2 gene).

Citations (12)

Summary

We haven't generated a summary for this paper yet.