Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized Network Dismantling (1801.01357v2)

Published 4 Jan 2018 in cs.SI, cond-mat.stat-mech, physics.soc-ph, and stat.CO

Abstract: Finding the set of nodes, which removed or (de)activated can stop the spread of (dis)information, contain an epidemic or disrupt the functioning of a corrupt/criminal organization is still one of the key challenges in network science. In this paper, we introduce the generalized network dismantling problem, which aims to find the set of nodes that, when removed from a network, results in a network fragmentation into subcritical network components at minimum cost. For unit costs, our formulation becomes equivalent to the standard network dismantling problem. Our non-unit cost generalization allows for the inclusion of topological cost functions related to node centrality and non-topological features such as the price, protection level or even social value of a node. In order to solve this optimization problem, we propose a method, which is based on the spectral properties of a novel node-weighted Laplacian operator. The proposed method is applicable to large-scale networks with millions of nodes. It outperforms current state-of-the-art methods and opens new directions in understanding the vulnerability and robustness of complex systems.

Citations (139)

Summary

We haven't generated a summary for this paper yet.