Papers
Topics
Authors
Recent
2000 character limit reached

Topological Entropy for Discontinuous Semiflows (1801.01238v2)

Published 4 Jan 2018 in math.DS

Abstract: We study two variations of Bowen's definitions of topological entropy based on separated and spanning sets which can be applied to the study of discontinuous semiflows on compact metric spaces. We prove that these definitions reduce to Bowen's ones in the case of continuous semiflows. As a second result, we prove that our entropies give a lower bound for the $\tau$-entropy defined by Alves, Carvalho and V\'asquez (2015). Finally, we prove that for impulsive semiflows satisfying certain regularity condition, there exists a continuous semiflow defined on another compact metric space which is related to the first one by a semiconjugation, and whose topological entropy equals our extended notion of topological entropy by using separated sets for the original semiflow.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.