Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 83 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

On the Entanglement Entropy of Maxwell Theory: A Condensed Matter Perspective (1801.01158v3)

Published 3 Jan 2018 in hep-th

Abstract: Despite the seeming simplicity of the theory, calculating (and even defining) entanglement entropy for the Maxwell theory of a $U(1)$ gauge field in (3+1) dimensions has been the subject of controversy. It is generally accepted that the ground state entanglement entropy for a region of linear size $L$ behaves as an area law with a subleading logarithm, $S = \alpha L2 -\gamma \log L$. While the logarithmic coefficient $\gamma$ is believed to be universal, there has been disagreement about its precise value. After carefully accounting for subtle boundary corrections, multiple analyses in the high energy literature have converged on an answer related to the conformal trace anomaly, which is only sensitive to the local curvature of the partition. In contrast, a condensed matter treatment of the problem yielded a topological contribution which is not captured by the conformal field theory calculation. In this perspective piece, we review aspects of the various calculations and discuss the resolution of the discrepancy, emphasizing the important role played by charged states (the "extended Hilbert space") in defining entanglement for a gauge theory. While the trace anomaly result is sufficient for a strictly pure gauge field, coupling the gauge field to dynamical charges of mass $m$ gives a topological contribution to $\gamma$ which survives even in the $m\rightarrow\infty$ limit. For many situations, the topological contribution from dynamical charges is physically meaningful and should be taken into account. We also comment on other common issues of entanglement in gauge theories, such as entanglement distillation, algebraic definitions of entanglement, and gauge-fixing procedures.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube