2000 character limit reached
Koszul almost complete intersections (1801.00763v1)
Published 2 Jan 2018 in math.AC
Abstract: Let $R = S/I$ be a quotient of a standard graded polynomial ring $S$ by an ideal $I$ generated by quadrics. If $R$ is Koszul, a question of Avramov, Conca, and Iyengar asks whether the Betti numbers of $R$ over $S$ can be bounded above by binomial coefficients on the minimal number of generators of $I$. Motivated by previous results for Koszul algebras defined by three quadrics, we give a complete classification of the structure of Koszul almost complete intersections and, in the process, give an affirmative answer to the above question for all such rings.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.