Quadratic Gorenstein rings and the Koszul property II (1903.08273v2)
Abstract: A question of Conca, Rossi, and Valla asks whether every quadratic Gorenstein ring $R$ of regularity three is Koszul. In a previous paper, we use idealization to answer their question, proving that in nine or more variables there exist quadratic Gorenstein rings of regularity three which are not Koszul. In this paper, we study the analog of the Conca-Rossi-Valla question when the regularity of $R$ is four or more. Let $R$ be a quadratic Gorenstein ring having $\mathrm{codim}\, R = c$ and $\mathrm{reg}\, R = r \ge 4$. We prove that if $c = r+1$ then $R$ is always Koszul, and for every $c \geq r+2$, we construct quadratic Gorenstein rings that are not Koszul, answering questions of Matsuda and Migliore-Nagel concerning the $h$-vectors of quadratic Gorenstein rings.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.