Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Quadratic Gorenstein rings and the Koszul property II (1903.08273v2)

Published 19 Mar 2019 in math.AC

Abstract: A question of Conca, Rossi, and Valla asks whether every quadratic Gorenstein ring $R$ of regularity three is Koszul. In a previous paper, we use idealization to answer their question, proving that in nine or more variables there exist quadratic Gorenstein rings of regularity three which are not Koszul. In this paper, we study the analog of the Conca-Rossi-Valla question when the regularity of $R$ is four or more. Let $R$ be a quadratic Gorenstein ring having $\mathrm{codim}\, R = c$ and $\mathrm{reg}\, R = r \ge 4$. We prove that if $c = r+1$ then $R$ is always Koszul, and for every $c \geq r+2$, we construct quadratic Gorenstein rings that are not Koszul, answering questions of Matsuda and Migliore-Nagel concerning the $h$-vectors of quadratic Gorenstein rings.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.