Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Newton-Okounkov polytopes of Bott-Samelson varieties as Minkowski sums (1801.00334v1)

Published 31 Dec 2017 in math.AG

Abstract: We compute the Newton--Okounkov bodies of line bundles on a Bott--Samelson resolution of the complete flag variety of $GL_n$ for a geometric valuation coming from a flag of translated Schubert subvarieties. The Bott--Samelson resolution corresponds to the decomposition $(s_1)(s_2s_1)(s_3s_2s_1)(\ldots)(s_{n-1}\ldots s_1)$ of the longest element in the Weyl group, and the Schubert subvarieties correspond to the terminal subwords in this decomposition. We prove that the resulting Newton--Okounkov polytopes for semiample line bundles satisfy the additivity property with respect to the Minkowski sum. In particular, they are Minkowski sums of Newton--Okounkov polytopes of line bundles on the complete flag varieties for $GL_2$,\ldots, $GL_{n}$.

Summary

We haven't generated a summary for this paper yet.