Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Additive Approximate Gaussian Process Model for Large Spatio-Temporal Data (1801.00319v3)

Published 31 Dec 2017 in stat.ME and stat.CO

Abstract: Motivated by a large ground-level ozone dataset, we propose a new computationally efficient additive approximate Gaussian process. The proposed method incorporates a computational-complexity-reduction method and a separable covariance function, which can flexibly capture various spatio-temporal dependence structure. The first component is able to capture nonseparable spatio-temporal variability while the second component captures the separable variation. Based on a hierarchical formulation of the model, we are able to utilize the computational advantages of both components and perform efficient Bayesian inference. To demonstrate the inferential and computational benefits of the proposed method, we carry out extensive simulation studies assuming various scenarios of underlying spatio-temporal covariance structure. The proposed method is also applied to analyze large spatio-temporal measurements of ground-level ozone in the Eastern United States.

Summary

We haven't generated a summary for this paper yet.