Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rank Pruning for Dominance Queries in CP-Nets (1712.08588v2)

Published 22 Dec 2017 in cs.AI and stat.ME

Abstract: Conditional preference networks (CP-nets) are a graphical representation of a person's (conditional) preferences over a set of discrete variables. In this paper, we introduce a novel method of quantifying preference for any given outcome based on a CP-net representation of a user's preferences. We demonstrate that these values are useful for reasoning about user preferences. In particular, they allow us to order (any subset of) the possible outcomes in accordance with the user's preferences. Further, these values can be used to improve the efficiency of outcome dominance testing. That is, given a pair of outcomes, we can determine which the user prefers more efficiently. Through experimental results, we show that this method is more effective than existing techniques for improving dominance testing efficiency. We show that the above results also hold for CP-nets that express indifference between variable values.

Citations (2)

Summary

We haven't generated a summary for this paper yet.