Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Frequency Domain Neural Network for Fast Image Super-resolution (1712.03037v1)

Published 8 Dec 2017 in cs.CV

Abstract: In this paper, we present a frequency domain neural network for image super-resolution. The network employs the convolution theorem so as to cast convolutions in the spatial domain as products in the frequency domain. Moreover, the non-linearity in deep nets, often achieved by a rectifier unit, is here cast as a convolution in the frequency domain. This not only yields a network which is very computationally efficient at testing but also one whose parameters can all be learnt accordingly. The network can be trained using back propagation and is devoid of complex numbers due to the use of the Hartley transform as an alternative to the Fourier transform. Moreover, the network is potentially applicable to other problems elsewhere in computer vision and image processing which are often cast in the frequency domain. We show results on super-resolution and compare against alternatives elsewhere in the literature. In our experiments, our network is one to two orders of magnitude faster than the alternatives with an imperceptible loss of performance.

Citations (30)

Summary

We haven't generated a summary for this paper yet.