Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

The logarithmic Cardy case: Boundary states and annuli (1712.01922v2)

Published 5 Dec 2017 in math.QA and hep-th

Abstract: We present a model-independent study of boundary states in the Cardy case that covers all conformal field theories for which the representation category of the chiral algebra is a - not necessarily semisimple - modular tensor category. This class, which we call finite CFTs, includes all rational theories, but goes much beyond these, and in particular comprises many logarithmic conformal field theories. We show that the following two postulates for a Cardy case are compatible beyond rational CFT and lead to a universal description of boundary states that realizes a standard mathematical setup: First, for bulk fields, the pairing of left and right movers is given by (a coend involving) charge conjugation; and second, the boundary conditions are given by the objects of the category of chiral data. For rational theories our proposal reproduces the familiar result for the boundary states of the Cardy case. Further, with the help of sewing we compute annulus amplitudes. Our results show in particular that these possess an interpretation as partition functions, a constraint that for generic finite CFTs is much more restrictive than for rational ones.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube