Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cross Temporal Recurrent Networks for Ranking Question Answer Pairs (1711.07656v1)

Published 21 Nov 2017 in cs.CL, cs.AI, and cs.IR

Abstract: Temporal gates play a significant role in modern recurrent-based neural encoders, enabling fine-grained control over recursive compositional operations over time. In recurrent models such as the long short-term memory (LSTM), temporal gates control the amount of information retained or discarded over time, not only playing an important role in influencing the learned representations but also serving as a protection against vanishing gradients. This paper explores the idea of learning temporal gates for sequence pairs (question and answer), jointly influencing the learned representations in a pairwise manner. In our approach, temporal gates are learned via 1D convolutional layers and then subsequently cross applied across question and answer for joint learning. Empirically, we show that this conceptually simple sharing of temporal gates can lead to competitive performance across multiple benchmarks. Intuitively, what our network achieves can be interpreted as learning representations of question and answer pairs that are aware of what each other is remembering or forgetting, i.e., pairwise temporal gating. Via extensive experiments, we show that our proposed model achieves state-of-the-art performance on two community-based QA datasets and competitive performance on one factoid-based QA dataset.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yi Tay (94 papers)
  2. Luu Anh Tuan (55 papers)
  3. Siu Cheung Hui (30 papers)
Citations (42)