Papers
Topics
Authors
Recent
2000 character limit reached

Estimating prediction error for complex samples (1711.04877v3)

Published 13 Nov 2017 in stat.ME and stat.ML

Abstract: With a growing interest in using non-representative samples to train prediction models for numerous outcomes it is necessary to account for the sampling design that gives rise to the data in order to assess the generalized predictive utility of a proposed prediction rule. After learning a prediction rule based on a non-uniform sample, it is of interest to estimate the rule's error rate when applied to unobserved members of the population. Efron (1986) proposed a general class of covariance penalty inflated prediction error estimators that assume the available training data are representative of the target population for which the prediction rule is to be applied. We extend Efron's estimator to the complex sample context by incorporating Horvitz-Thompson sampling weights and show that it is consistent for the true generalization error rate when applied to the underlying superpopulation. The resulting Horvitz-Thompson-Efron (HTE) estimator is equivalent to dAIC, a recent extension of AIC to survey sampling data, but is more widely applicable. The proposed methodology is assessed with simulations and is applied to models predicting renal function obtained from the large-scale NHANES survey.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.