Papers
Topics
Authors
Recent
2000 character limit reached

Variance Reduced methods for Non-convex Composition Optimization

Published 13 Nov 2017 in stat.ML and math.OC | (1711.04416v1)

Abstract: This paper explores the non-convex composition optimization in the form including inner and outer finite-sum functions with a large number of component functions. This problem arises in some important applications such as nonlinear embedding and reinforcement learning. Although existing approaches such as stochastic gradient descent (SGD) and stochastic variance reduced gradient (SVRG) descent can be applied to solve this problem, their query complexity tends to be high, especially when the number of inner component functions is large. In this paper, we apply the variance-reduced technique to derive two variance reduced algorithms that significantly improve the query complexity if the number of inner component functions is large. To the best of our knowledge, this is the first work that establishes the query complexity analysis for non-convex stochastic composition. Experiments validate the proposed algorithms and theoretical analysis.

Citations (23)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.