Hierarchical hyperbolicity of graphs of multicurves (1711.03080v3)
Abstract: We show that many graphs naturally associated to a connected, compact, orientable surface are hierarchically hyperbolic spaces in the sense of Behrstock, Hagen and Sisto. They also automatically have the coarse median property defined by Bowditch. Consequences for such graphs include a distance formula analogous to Masur and Minsky's distance formula for the mapping class group, an upper bound on the maximal dimension of quasiflats, and the existence of a quadratic isoperimetric inequality. The hierarchically hyperbolic structure also gives rise to a simple criterion for when such graphs are Gromov hyperbolic.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.