Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Complete classification for simple root cyclic codes over local rings $\mathbb{Z}_{p^s}[v]/\langle v^2-pv\rangle$ (1710.09236v2)

Published 25 Oct 2017 in cs.IT and math.IT

Abstract: Let $p$ be a prime integer, $n,s\geq 2$ be integers satisfying ${\rm gcd}(p,n)=1$, and denote $R=\mathbb{Z}{ps}[v]/\langle v2-pv\rangle$. Then $R$ is a local non-principal ideal ring of $p{2s}$ elements. First, the structure of any cyclic code over $R$ of length $n$ and a complete classification of all these codes are presented. Then the cardinality of each code and dual codes of these codes are given. Moreover, self-dual cyclic codes over $R$ of length $n$ are investigated. Finally, we list some optimal $2$-quasi-cyclic self-dual linear codes over $\mathbb{Z}_4$ of length $30$ and extremal $4$-quasi-cyclic self-dual binary linear $[60,30,12]$ codes derived from cyclic codes over $\mathbb{Z}{4}[v]/\langle v2+2v\rangle$ of length $15$.

Citations (2)

Summary

We haven't generated a summary for this paper yet.