Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Local Word Vectors Guiding Keyphrase Extraction (1710.07503v4)

Published 20 Oct 2017 in cs.CL

Abstract: Automated keyphrase extraction is a fundamental textual information processing task concerned with the selection of representative phrases from a document that summarize its content. This work presents a novel unsupervised method for keyphrase extraction, whose main innovation is the use of local word embeddings (in particular GloVe vectors), i.e., embeddings trained from the single document under consideration. We argue that such local representation of words and keyphrases are able to accurately capture their semantics in the context of the document they are part of, and therefore can help in improving keyphrase extraction quality. Empirical results offer evidence that indeed local representations lead to better keyphrase extraction results compared to both embeddings trained on very large third corpora or larger corpora consisting of several documents of the same scientific field and to other state-of-the-art unsupervised keyphrase extraction methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
Citations (1)

Summary

We haven't generated a summary for this paper yet.