Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fully adaptive algorithm for pure exploration in linear bandits (1710.05552v1)

Published 16 Oct 2017 in stat.ML

Abstract: We propose the first fully-adaptive algorithm for pure exploration in linear bandits---the task to find the arm with the largest expected reward, which depends on an unknown parameter linearly. While existing methods partially or entirely fix sequences of arm selections before observing rewards, our method adaptively changes the arm selection strategy based on past observations at each round. We show our sample complexity matches the achievable lower bound up to a constant factor in an extreme case. Furthermore, we evaluate the performance of the methods by simulations based on both synthetic setting and real-world data, in which our method shows vast improvement over existing methods.

Citations (83)

Summary

We haven't generated a summary for this paper yet.