Papers
Topics
Authors
Recent
Search
2000 character limit reached

Causality Testing: A Data Compression Framework

Published 11 Oct 2017 in physics.data-an, physics.bio-ph, and q-bio.NC | (1710.04538v2)

Abstract: Causality testing, the act of determining cause and effect from measurements, is widely used in physics, climatology, neuroscience, econometrics and other disciplines. As a result, a large number of causality testing methods based on various principles have been developed. Causal relationships in complex systems are typically accompanied by entropic exchanges which are encoded in patterns of dynamical measurements. A data compression algorithm which can extract these encoded patterns could be used for inferring these relations. This motivates us to propose, for the first time, a generic causality testing framework based on data compression. The framework unifies existing causality testing methods and enables us to innovate a novel Compression-Complexity Causality measure. This measure is rigorously tested on simulated and real-world time series and is found to overcome the limitations of Granger Causality and Transfer Entropy, especially for noisy and non-synchronous measurements. Additionally, it gives insight on the `kind' of causal influence between input time series by the notions of positive and negative causality.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.