Nonlinear fractional magnetic Schrödinger equation: existence and multiplicity
Abstract: In this paper we focus our attention on the following nonlinear fractional Schr\"odinger equation with magnetic field \begin{equation*} \varepsilon{2s}(-\Delta)_{A/\varepsilon}{s}u+V(x)u=f(|u|{2})u \quad \mbox{ in } \mathbb{R}{N}, \end{equation*} where $\varepsilon>0$ is a parameter, $s\in (0, 1)$, $N\geq 3$, $(-\Delta){s}_{A}$ is the fractional magnetic Laplacian, $V:\mathbb{R}{N}\rightarrow \mathbb{R}$ and $A:\mathbb{R}{N}\rightarrow \mathbb{R}N$ are continuous potentials and $f:\mathbb{R}{N}\rightarrow \mathbb{R}$ is a subcritical nonlinearity. By applying variational methods and Ljusternick-Schnirelmann theory, we prove existence and multiplicity of solutions for $\varepsilon$ small.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.