Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On-chip Face Recognition System Design with Memristive Hierarchical Temporal Memory (1709.08184v1)

Published 24 Sep 2017 in cs.ET

Abstract: Hierarchical Temporal Memory is a new machine learning algorithm intended to mimic the working principle of neocortex, part of the human brain, which is responsible for learning, classification, and making predictions. Although many works illustrate its effectiveness as a software algorithm, hardware design for HTM remains an open research problem. Hence, this work proposes an architecture for HTM Spatial Pooler and Temporal Memory with learning mechanism, which creates a single image for each class based on important and unimportant features of all images in the training set. In turn, the reduction in the number of templates within database reduces the memory requirements and increases the processing speed. Moreover, face recognition analysis indicates that for a large number of training images, the proposed design provides higher accuracy results (83.5\%) compared to only Spatial Pooler design presented in the previous works.

Citations (20)

Summary

We haven't generated a summary for this paper yet.