Papers
Topics
Authors
Recent
2000 character limit reached

On the multi-dimensional elephant random walk (1709.07345v1)

Published 21 Sep 2017 in math.PR, math.ST, and stat.TH

Abstract: The purpose of this paper is to investigate the asymptotic behavior of the multi-dimensional elephant random walk (MERW). It is a non-Markovian random walk which has a complete memory of its entire history. A wide range of literature is available on the one-dimensional ERW. Surprisingly, no references are available on the MERW. The goal of this paper is to fill the gap by extending the results on the one-dimensional ERW to the MERW. In the diffusive and critical regimes, we establish the almost sure convergence, the law of iterated logarithm and the quadratic strong law for the MERW. The asymptotic normality of the MERW, properly normalized, is also provided. In the superdiffusive regime, we prove the almost sure convergence as well as the mean square convergence of the MERW. All our analysis relies on asymptotic results for multi-dimensional martingales.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.