Papers
Topics
Authors
Recent
Search
2000 character limit reached

High-dimensional posterior consistency for hierarchical non-local priors in regression

Published 19 Sep 2017 in math.ST and stat.TH | (1709.06607v3)

Abstract: The choice of tuning parameters in Bayesian variable selection is a critical problem in modern statistics. In particular, for Bayesian linear regression with non-local priors, the scale parameter in the non-local prior density is an important tuning parameter which reflects the dispersion of the non-local prior density around zero, and implicitly determines the size of the regression coefficients that will be shrunk to zero. Current approaches treat the scale parameter as given, and suggest choices based on prior coverage/asymptotic considerations. In this paper, we consider the fully Bayesian approach introduced in (Wu, 2016) with the pMOM non-local prior and an appropriate Inverse-Gamma prior on the tuning parameter to analyze the underlying theoretical property. Under standard regularity assumptions, we establish strong model selection consistency in a high-dimensional setting, where $p$ is allowed to increase at a polynomial rate with n$or even at a sub-exponential rate with n. Through simulation studies, we demonstrate that our model selection procedure can outperform other Bayesian methods which treat the scale parameter as given, and commonly used penalized likelihood methods, in a range of simulation settings.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.