Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 229 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The varieties of semi-conformal vectors of affine vertex operator algebras (1709.05714v1)

Published 17 Sep 2017 in math.RT, math-ph, and math.MP

Abstract: This is a continuation of our work to understand vertex operator algebras using the geometric properties of varieties attached to vertex operator algebras. For a class of vertex operator algebras including affine vertex operator algebras associated to a finite dimensional simple Lie algebra $\mathfrak{g}$, we describe their varieties of semi-conformal vectors by some matrix equations. These matrix equations are too complicated to be solved for us. However, for affine vertex operator algebras associated to the simple Lie algebra $\mathfrak{g}$, we find the adjoint group $G$ of $\mathfrak{g}$ acts on the corresponding varieties by a natural way, which implies that such varieties should be described more clearly by studying the corresponding $G$-orbit structures. Based on above methods for general cases, as an example, considering affine vertex operator algebras associated to the Lie algebra $\mathfrak{sl}_2(\mathbb{C})$, we shall give the decompositions of $G$-orbits of varieties of their semi-conformal vectors according to different levels. Our results imply that such orbit structures depends on the levels of affine vertex operator algebras associated to a finite dimensional simple Lie algebra $\mathfrak{g}$

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube