Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Cohomological varieties associated to vertex operator algebras (2207.11550v2)

Published 23 Jul 2022 in math.QA and math.RT

Abstract: Given a vertex operator algebra V , one can attach a graded Poisson algebra called the C2-algebra R(V). The associate Poisson scheme provides an important invariant for V and has been studied by Arakawa as the associated variety. In this article, we define and examine the cohomological variety of a vertex algebra, a notion cohomologically dual to that of the associated variety, which measures the smoothness of the associated scheme at the vertex point. We study its basic properties and then construct a closed subvariety of the cohomological variety for rational affine vertex operator algebras constructed from finite dimensional simple Lie algebras. We also determine the cohomological varieties of the simple Virasoro vertex operator algebras. These examples indicate that, although the associated variety for a rational C2-cofinite vertex operator algebra is always a simple point, the cohomological variety can have as large a dimension as possible. In this paper, we study R(V) as a commutative algebra only and do not use the property of its Poisson structure, which is expected to provide more refined invariants. The goal of this work is to study the cohomological supports of modules for vertex algebras as the cohomological support varieties for finite groups and restricted Lie algebras.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.