Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Action Schema Networks: Generalised Policies with Deep Learning (1709.04271v2)

Published 13 Sep 2017 in cs.AI and cs.LG

Abstract: In this paper, we introduce the Action Schema Network (ASNet): a neural network architecture for learning generalised policies for probabilistic planning problems. By mimicking the relational structure of planning problems, ASNets are able to adopt a weight-sharing scheme which allows the network to be applied to any problem from a given planning domain. This allows the cost of training the network to be amortised over all problems in that domain. Further, we propose a training method which balances exploration and supervised training on small problems to produce a policy which remains robust when evaluated on larger problems. In experiments, we show that ASNet's learning capability allows it to significantly outperform traditional non-learning planners in several challenging domains.

Citations (69)

Summary

We haven't generated a summary for this paper yet.