Papers
Topics
Authors
Recent
2000 character limit reached

Winding of simple walks on the square lattice

Published 12 Sep 2017 in math.CO, math-ph, math.MP, and math.PR | (1709.04042v5)

Abstract: A method is described to count simple diagonal walks on $\mathbb{Z}2$ with a fixed starting point and endpoint on one of the axes and a fixed winding angle around the origin. The method involves the decomposition of such walks into smaller pieces, the generating functions of which are encoded in a commuting set of Hilbert space operators. The general enumeration problem is then solved by obtaining an explicit eigenvalue decomposition of these operators involving elliptic functions. By further restricting the intermediate winding angles of the walks to some open interval, the method can be used to count various classes of walks restricted to cones in $\mathbb{Z}2$ of opening angles that are integer multiples of $\pi/4$. We present three applications of this main result. First we find an explicit generating function for the walks in such cones that start and end at the origin. In the particular case of a cone of angle $3\pi/4$ these walks are directly related to Gessel's walks in the quadrant, and we provide a new proof of their enumeration. Next we study the distribution of the winding angle of a simple random walk on $\mathbb{Z}2$ around a point in the close vicinity of its starting point, for which we identify discrete analogues of the known hyperbolic secant laws and a probabilistic interpretation of the Jacobi elliptic functions. Finally we relate the spectrum of one of the Hilbert space operators to the enumeration of closed loops in $\mathbb{Z}2$ with fixed winding number around the origin.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.