Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Characterizing Geo-located Tweets in Brazilian Megacities (1709.01981v1)

Published 6 Sep 2017 in cs.CY

Abstract: This work presents a framework for collecting, processing and mining geo-located tweets in order to extract meaningful and actionable knowledge in the context of smart cities. We collected and characterized more than 9M tweets from the two biggest cities in Brazil, Rio de Janeiro and S~ao Paulo. We performed topic modeling using the Latent Dirichlet Allocation model to produce an unsupervised distribution of semantic topics over the stream of geo-located tweets as well as a distribution of words over those topics. We manually labeled and aggregated similar topics obtaining a total of 29 different topics across both cities. Results showed similarities in the majority of topics for both cities, reflecting similar interests and concerns among the population of Rio de Janeiro and S~ao Paulo. Nevertheless, some specific topics are more predominant in one of the cities.

Citations (5)

Summary

We haven't generated a summary for this paper yet.