Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evaluation modules for quantum toroidal ${\mathfrak{gl}}_n$ algebras (1709.01592v4)

Published 5 Sep 2017 in math.QA, math-ph, math.MP, and math.RT

Abstract: The affine evaluation map is a surjective homomorphism from the quantum toroidal ${\mathfrak {gl}}n$ algebra ${\mathcal E}'_n(q_1,q_2,q_3)$ to the quantum affine algebra $U'_q\widehat{\mathfrak {gl}}_n$ at level $\kappa$ completed with respect to the homogeneous grading, where $q_2=q2$ and $q_3n=\kappa2$. We discuss ${\mathcal E}'_n(q_1,q_2,q_3)$ evaluation modules. We give highest weights of evaluation highest weight modules. We also obtain the decomposition of the evaluation Wakimoto module with respect to a Gelfand-Zeitlin type subalgebra of a completion of ${\mathcal E}'_n(q_1,q_2,q_3)$, which describes a deformation of the coset theory $\widehat{\mathfrak {gl}}_n/\widehat{\mathfrak {gl}}{n-1}$.

Summary

We haven't generated a summary for this paper yet.