Papers
Topics
Authors
Recent
2000 character limit reached

SamBaTen: Sampling-based Batch Incremental Tensor Decomposition (1709.00668v2)

Published 3 Sep 2017 in stat.ML, cs.LG, and cs.AI

Abstract: Tensor decompositions are invaluable tools in analyzing multimodal datasets. In many real-world scenarios, such datasets are far from being static, to the contrary they tend to grow over time. For instance, in an online social network setting, as we observe new interactions over time, our dataset gets updated in its "time" mode. How can we maintain a valid and accurate tensor decomposition of such a dynamically evolving multimodal dataset, without having to re-compute the entire decomposition after every single update? In this paper we introduce SaMbaTen, a Sampling-based Batch Incremental Tensor Decomposition algorithm, which incrementally maintains the decomposition given new updates to the tensor dataset. SaMbaTen is able to scale to datasets that the state-of-the-art in incremental tensor decomposition is unable to operate on, due to its ability to effectively summarize the existing tensor and the incoming updates, and perform all computations in the reduced summary space. We extensively evaluate SaMbaTen using synthetic and real datasets. Indicatively, SaMbaTen achieves comparable accuracy to state-of-the-art incremental and non-incremental techniques, while being 25-30 times faster. Furthermore, SaMbaTen scales to very large sparse and dense dynamically evolving tensors of dimensions up to 100K x 100K x 100K where state-of-the-art incremental approaches were not able to operate.

Citations (37)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.