Papers
Topics
Authors
Recent
2000 character limit reached

Training Shallow and Thin Networks for Acceleration via Knowledge Distillation with Conditional Adversarial Networks

Published 2 Sep 2017 in cs.LG, cs.AI, and cs.CV | (1709.00513v2)

Abstract: There is an increasing interest on accelerating neural networks for real-time applications. We study the student-teacher strategy, in which a small and fast student network is trained with the auxiliary information learned from a large and accurate teacher network. We propose to use conditional adversarial networks to learn the loss function to transfer knowledge from teacher to student. The proposed method is particularly effective for relatively small student networks. Moreover, experimental results show the effect of network size when the modern networks are used as student. We empirically study the trade-off between inference time and classification accuracy, and provide suggestions on choosing a proper student network.

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.