Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Densely Guided Knowledge Distillation using Multiple Teacher Assistants (2009.08825v3)

Published 18 Sep 2020 in cs.CV

Abstract: With the success of deep neural networks, knowledge distillation which guides the learning of a small student network from a large teacher network is being actively studied for model compression and transfer learning. However, few studies have been performed to resolve the poor learning issue of the student network when the student and teacher model sizes significantly differ. In this paper, we propose a densely guided knowledge distillation using multiple teacher assistants that gradually decreases the model size to efficiently bridge the large gap between the teacher and student networks. To stimulate more efficient learning of the student network, we guide each teacher assistant to every other smaller teacher assistants iteratively. Specifically, when teaching a smaller teacher assistant at the next step, the existing larger teacher assistants from the previous step are used as well as the teacher network. Moreover, we design stochastic teaching where, for each mini-batch, a teacher or teacher assistants are randomly dropped. This acts as a regularizer to improve the efficiency of teaching of the student network. Thus, the student can always learn salient distilled knowledge from the multiple sources. We verified the effectiveness of the proposed method for a classification task using CIFAR-10, CIFAR-100, and ImageNet. We also achieved significant performance improvements with various backbone architectures such as ResNet, WideResNet, and VGG.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Wonchul Son (2 papers)
  2. Jaemin Na (9 papers)
  3. Wonjun Hwang (17 papers)
  4. JunYong Choi (8 papers)
Citations (97)