Papers
Topics
Authors
Recent
2000 character limit reached

Convex skeletons of complex networks

Published 1 Sep 2017 in cs.SI, math.MG, and physics.soc-ph | (1709.00255v4)

Abstract: A convex network can be defined as a network such that every connected induced subgraph includes all the shortest paths between its nodes. Fully convex network would therefore be a collection of cliques stitched together in a tree. In this paper, we study the largest high-convexity part of empirical networks obtained by removing the least number of edges, which we call a convex skeleton. A convex skeleton is a generalisation of a network spanning tree in which each edge can be replaced by a clique of arbitrary size. We present different approaches for extracting convex skeletons and apply them to social collaboration and protein interactions networks, autonomous systems graphs and food webs. We show that the extracted convex skeletons retain the degree distribution, clustering, connectivity, distances, node position and also community structure, while making the shortest paths between the nodes largely unique. Moreover, in the Slovenian computer scientists coauthorship network, a convex skeleton retains the strongest ties between the authors, differently from a spanning tree or high-betweenness backbone and high-salience skeleton. A convex skeleton thus represents a simple definition of a network backbone with applications in coauthorship and other social collaboration networks.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.