Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 113 tok/s
GPT OSS 120B 472 tok/s Pro
Kimi K2 214 tok/s Pro
2000 character limit reached

Convex skeletons of complex networks (1709.00255v4)

Published 1 Sep 2017 in cs.SI, math.MG, and physics.soc-ph

Abstract: A convex network can be defined as a network such that every connected induced subgraph includes all the shortest paths between its nodes. Fully convex network would therefore be a collection of cliques stitched together in a tree. In this paper, we study the largest high-convexity part of empirical networks obtained by removing the least number of edges, which we call a convex skeleton. A convex skeleton is a generalisation of a network spanning tree in which each edge can be replaced by a clique of arbitrary size. We present different approaches for extracting convex skeletons and apply them to social collaboration and protein interactions networks, autonomous systems graphs and food webs. We show that the extracted convex skeletons retain the degree distribution, clustering, connectivity, distances, node position and also community structure, while making the shortest paths between the nodes largely unique. Moreover, in the Slovenian computer scientists coauthorship network, a convex skeleton retains the strongest ties between the authors, differently from a spanning tree or high-betweenness backbone and high-salience skeleton. A convex skeleton thus represents a simple definition of a network backbone with applications in coauthorship and other social collaboration networks.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube