Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 83 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Network Clustering for Latent State and Changepoint Detection (2111.01273v1)

Published 1 Nov 2021 in cs.SI and cs.LG

Abstract: Network models provide a powerful and flexible framework for analyzing a wide range of structured data sources. In many situations of interest, however, multiple networks can be constructed to capture different aspects of an underlying phenomenon or to capture changing behavior over time. In such settings, it is often useful to cluster together related networks in attempt to identify patterns of common structure. In this paper, we propose a convex approach for the task of network clustering. Our approach uses a convex fusion penalty to induce a smoothly-varying tree-like cluster structure, eliminating the need to select the number of clusters a priori. We provide an efficient algorithm for convex network clustering and demonstrate its effectiveness on synthetic examples.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube