Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inferring Narrative Causality between Event Pairs in Films (1708.09496v1)

Published 30 Aug 2017 in cs.CL

Abstract: To understand narrative, humans draw inferences about the underlying relations between narrative events. Cognitive theories of narrative understanding define these inferences as four different types of causality, that include pairs of events A, B where A physically causes B (X drop, X break), to pairs of events where A causes emotional state B (Y saw X, Y felt fear). Previous work on learning narrative relations from text has either focused on "strict" physical causality, or has been vague about what relation is being learned. This paper learns pairs of causal events from a corpus of film scene descriptions which are action rich and tend to be told in chronological order. We show that event pairs induced using our methods are of high quality and are judged to have a stronger causal relation than event pairs from Rel-grams.

Citations (25)

Summary

We haven't generated a summary for this paper yet.