Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inference of Fine-Grained Event Causality from Blogs and Films (1708.09453v1)

Published 30 Aug 2017 in cs.CL and cs.AI

Abstract: Human understanding of narrative is mainly driven by reasoning about causal relations between events and thus recognizing them is a key capability for computational models of language understanding. Computational work in this area has approached this via two different routes: by focusing on acquiring a knowledge base of common causal relations between events, or by attempting to understand a particular story or macro-event, along with its storyline. In this position paper, we focus on knowledge acquisition approach and claim that newswire is a relatively poor source for learning fine-grained causal relations between everyday events. We describe experiments using an unsupervised method to learn causal relations between events in the narrative genres of first-person narratives and film scene descriptions. We show that our method learns fine-grained causal relations, judged by humans as likely to be causal over 80% of the time. We also demonstrate that the learned event pairs do not exist in publicly available event-pair datasets extracted from newswire.

Citations (30)

Summary

We haven't generated a summary for this paper yet.