The Morse property for functions of Kirchhoff-Routh path type (1708.09315v1)
Abstract: For a bounded domain $\Omega\subset\mathbb{R}n$ let $H_\Omega:\Omega\times\Omega\to\mathbb{R}$ be the regular part of the Dirichlet Green function for the Laplace operator. Given a fixed arbitrary ${\mathcal C}2$ function $f:{\mathcal D}\to\mathbb{R}$, defined on an open subset ${\mathcal D}\subset\mathbb{R}{nN}$, and fixed coefficients $\lambda_1,\dots,\lambda_N\in\mathbb{R}\setminus{0}$ we consider the function $f_\Omega:{\mathcal D}\cap\OmegaN\to\mathbb{R}$ defined as [ f_\Omega(x_1,\dots,x_N) = f(x_1,\dots,x_N) - \sum_{j,k=1}N \lambda_j\lambda_k H_\Omega(x_j,x_k). ] We prove that $f_\Omega$ is a Morse function for most domains $\Omega$ of class ${\mathcal C}{m+2,\alpha}$, any $m\ge0$, $0<\alpha<1$. This applies in particular to the Robin function $h:\Omega\to\mathbb{R}$, $h(x)=H_\Omega(x,x)$, and to the Kirchhoff-Routh path function where $\Omega\subset\mathbb{R}2$, ${\mathcal D}={x\in\mathbb{R}{2N}: \text{$x_j\ne x_k$ for $j\ne k$}}$, and [ f(x_1,\dots,x_N) = - \frac{1}{2\pi}\sum_{\genfrac{}{}{0pt}{}{j,k=1}{j\ne k}}N\lambda_j\lambda_k\log|x_j-x_k|. ]
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.