Short Presburger arithmetic is hard (1708.08179v3)
Abstract: We study the computational complexity of short sentences in Presburger arithmetic (Short-PA). Here by "short" we mean sentences with a bounded number of variables, quantifiers, inequalities and Boolean operations; the input consists only of the integer coefficients involved in the linear inequalities. We prove that satisfiability of Short-PA sentences with $m+2$ alternating quantifiers is $\Sigma_{P}m$-complete or $\Pi_{P}m$-complete, when the first quantifier is $\exists$ or $\forall$, respectively. Counting versions and restricted systems are also analyzed. Further application are given to hardness of two natural problems in Integer Optimizations.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.