Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Induction of Decision Trees based on Generalized Graph Queries (1708.05563v1)

Published 18 Aug 2017 in cs.LG and cs.AI

Abstract: Usually, decision tree induction algorithms are limited to work with non relational data. Given a record, they do not take into account other objects attributes even though they can provide valuable information for the learning task. In this paper we present GGQ-ID3, a multi-relational decision tree learning algorithm that uses Generalized Graph Queries (GGQ) as predicates in the decision nodes. GGQs allow to express complex patterns (including cycles) and they can be refined step-by-step. Also, they can evaluate structures (not only single records) and perform Regular Pattern Matching. GGQ are built dynamically (pattern mining) during the GGQ-ID3 tree construction process. We will show how to use GGQ-ID3 to perform multi-relational machine learning keeping complexity under control. Finally, some real examples of automatically obtained classification trees and semantic patterns are shown. ----- Normalmente, los algoritmos de inducci\'on de \'arboles de decisi\'on trabajan con datos no relacionales. Dado un registro, no tienen en cuenta los atributos de otros objetos a pesar de que \'estos pueden proporcionar informaci\'on \'util para la tarea de aprendizaje. En este art\'iculo presentamos GGQ-ID3, un algoritmo de aprendizaje de \'arboles de decisiones multi-relacional que utiliza Generalized Graph Queries (GGQ) como predicados en los nodos de decisi\'on. Los GGQs permiten expresar patrones complejos (incluyendo ciclos) y pueden ser refinados paso a paso. Adem\'as, pueden evaluar estructuras (no solo registros) y llevar a cabo Regular Pattern Matching. En GGQ-ID3, los GGQ son construidos din\'amicamente (pattern mining) durante el proceso de construcci\'on del \'arbol. Adem\'as, se muestran algunos ejemplos reales de \'arboles de clasificaci\'on multi-relacionales y patrones sem\'anticos obtenidos autom\'aticamente.

Summary

We haven't generated a summary for this paper yet.