Semiparametric Mixtures of Regressions with Single-index for Model Based Clustering
Abstract: In this article, we propose two classes of semiparametric mixture regression models with single-index for model based clustering. Unlike many semiparametric/nonparametric mixture regression models that can only be applied to low dimensional predictors, the new semiparametric models can easily incorporate high dimensional predictors into the nonparametric components. The proposed models are very general, and many of the recently proposed semiparametric/nonparametric mixture regression models are indeed special cases of the new models. Backfitting estimates and the corresponding modified EM algorithms are proposed to achieve optimal convergence rates for both parametric and nonparametric parts. We establish the identifiability results of the proposed two models and investigate the asymptotic properties of the proposed estimation procedures. Simulation studies are conducted to demonstrate the finite sample performance of the proposed models. An application of NBA data by new models reveals some new findings.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.