Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mixture of Regression Models with Single-Index (1602.06610v1)

Published 22 Feb 2016 in stat.ME

Abstract: In this article, we propose a class of semiparametric mixture regression models with single-index. We argue that many recently proposed semiparametric/nonparametric mixture regression models can be considered special cases of the proposed model. However, unlike existing semiparametric mixture regression models, the new pro- posed model can easily incorporate multivariate predictors into the nonparametric components. Backfitting estimates and the corresponding algorithms have been proposed for to achieve the optimal convergence rate for both the parameters and the nonparametric functions. We show that nonparametric functions can be esti- mated with the same asymptotic accuracy as if the parameters were known and the index parameters can be estimated with the traditional parametric root n convergence rate. Simulation studies and an application of NBA data have been conducted to demonstrate the finite sample performance of the proposed models.

Summary

We haven't generated a summary for this paper yet.