Papers
Topics
Authors
Recent
Search
2000 character limit reached

Dunford-Pettis and Compact Operators Based on Unbounded Absolute Weak Convergence

Published 13 Aug 2017 in math.FA | (1708.03970v7)

Abstract: In this paper, using the concept of unbounded absolute weak convergence ($uaw$-convergence, for short) in a Banach lattice, we define two classes of continuous operators, named $uaw$-Dunford-Pettis and $uaw$-compact operators. We investigate some properties and relations between them. In particular, we consider some hypotheses on domain or range spaces of operators such that the adjoint or the modulus of a $uaw$-Dunford-Pettis or $uaw$-compact operator inherits a similar property. In addition, we look into some connections between compact operators, weakly compact operators, and Dunford-Pettis ones with $uaw$-versions of these operators. Moreover, we examine some relations between $uaw$-Dunford-Pettis operators, $M$-weakly compact operators, $L$-weakly compact operators, and $o$-weakly compact ones. As a significant outcome, we show that the square of any positive $uaw$-Dunford-Pettis ($M$-weakly compact) operator on an order continuous Banach lattice is compact. Many examples are given to illustrate the essential conditions, as well.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.