Papers
Topics
Authors
Recent
Search
2000 character limit reached

Spaces of $uτ$-Dunford-Pettis and $uτ$-Compact Operators on Locally Solid Vector Lattices

Published 31 Oct 2017 in math.FA | (1710.11434v4)

Abstract: Suppose $X$ is a locally solid vector lattice. It is known that there are several non-equivalent spaces of bounded operators on $X$. In this paper, we consider some situations under which these classes of bounded operators form locally solid vector lattices. In addition, we generalize some notions of $uaw$-Dunford-Pettis operators and $uaw$-compact operators defined on a Banach lattice to general theme of locally solid vector lattices. With the aid of appropriate topologies, we investigate some relations between topological and lattice structures of these operators. In particular, we characterize those spaces for which these concepts of operators and the corresponding classes of bounded ones coincide.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.